Astrid Röpke

Past Land-Use and Fire Management in the Montafon Valley (Northern Alps): An Integrated Palaeoenvironmental Approach

Astrid Röpke

Past Land-Use and Fire Management in the Montafon Valley (Northern Alps): An Integrated Palaeoenvironmental Approach

Northern Alps; multidisciplinary approach; past human-fire-environment interactions; charcoal layers in soils.

Introduction

The role of fire in the prehistoric complex land-use history of European mountain areas has long been underestimated. Previous palaeoenvironmental studies focusing on long-term fire ecology indicate that in the Alps most disturbances since ca. 4000 yr BC were of human origin and fire was the decisive tool. These palaeo fire reconstructions are available from an array of natural archives that register fire at different scales and resolutions. While the abundance of microscopic charcoal particles in lakes, peat bogs and marine deposits can be used as a proxy for past regional fire activities, more local information can be derived from soils.

In the Northern Alps wild fires are very rare and therefore most signs of past fires can be regarded as anthropogenic. Various charcoal layers in the high montane-subalpine soils (1000–1800m a.s.l.) above the village Bartholomäberg (Montafon, Austria) point to a close correlation between fire, land-use history and soil development. According to the palaeoecological and archaeological research, different phases of land-use and settlement activity from Early to Middle Bronze Age (1800–1550 BC), Iron Age (800–15 BC) and the High Middle Ages (9th–13th century) could be detected so far. In order to record past fire activity, the fire history will be reconstructed by means of microscopic charcoal particles from a peat bog and macroscopic charcoal layers in soils. Combining geoarchaeological, palaeoecological and archaeological results should offer more detailed insight into the temporal and spatial distribution of fire activity and its consequences in high mountain regions.

Study Site and Archaeology

The Montafon valley is located in the southern part of Vorarlberg (Austria). It is enclosed within the mountainous ridges Verwall, Silvretta and Rätikon. The small village Bartholomäberg (900–1400m a.s.l.) is situated on the south exposed slopes of the Itonskopf.

This geoarchaeological project was supported by the German Foundation (DFG, RO 3889/1–1) and program Junior Scientists in Focus (Goethe University, Frankfurt, Germany). I would like to thank all members of the “Montafon project” led by Prof. Dr. Rüdiger Krause (Goethe University, Frankfurt, Germany) and am grateful to the Mayor of Bartholomäberg Martin Vallaster, the community and all the landowners, who allowed us to undertake extensive field studies.

1 Tinner et al. 2005; Rius, B. Vanniêre, and Galop 2009; Conedera and Tinner 2010.
2 Gavin et al. 2007.
(2089m a.s.l.) above the town of Schruns (689m a.s.l.). This region belongs to the northern edge of the crystalline zone which consists mainly of phyllite gneiss and mica schist at the base and sand, clay and marl limestone in the upper section. The climate of the Montafon Valley is temperate with an intermediate position between sub-oceanic and subcontinental conditions. In Schruns the annual mean temperature is 7.4°C and precipitation reaches 1243mm. The present vegetation is dominated by subcontinental, interalpine spruce-fir forest with meadows and pastures in the subalpine region. According to palaeoecological and archaeological investigations Bartholomäberg has been settled since the Early Bronze Age. Settlement activity resumed from the Later Hallstatt Period to the Early La Tène Period. Evidence for Bronze Age exploitation of copper is lacking so far, but first traces of Late Iron Age mining activity were found in association with heaps and mining debris. In the historical source Chürrätisches Reichsurbar (842 AD) smelting furnaces in this region are mentioned. In Bartholomäberg it is assumed that medieval mining started in the High Middle Ages and extended into the Late Middle Ages.

Material and Methods

In the former mining zone (1300–1450m a.s.l.) and pasture zone “Allmein” (1450–2000m a.s.l.) a total of 55 soil profiles were dug down, excluding five exposures from heaps, mining debris and a smelting place. Colours were described according to Munsell, soil types, horizons and layers according to the German classification Ad-hoc AG BODEN. Additionally soil samples were analysed for standard parameters (pH, total organic carbon, particle size distribution and pedogenic oxids). Micromorphological analyses were implemented to differentiate colluvial layers and palaeo surfaces. So far, 21 samples have been radiocarbon dated by AMS (acceleration mass spectrometry) and conventional analyses by Curt-Engelhorn-Zentrum Archäometrie (Mannheim/Tübingen, Germany), Cologne AMS Centre for Accelerator Mass Spectrometry and Beta Analytic (London, Florida), including 9 samples from the pasture zone and 12 from the former mining zone (Tab. 1). They were calibrated via OxCal v 4.17. Bearing in mind that charcoal can be transported by post-depositional mixing, only in situ layers were radiocarbon dated. The palynological data and microscopic charcoal counts have been worked out by Prof. Dr. Klaus Oeggl and his team (University of Innsbruck, Austria).

Results and Interpretation

Soils

In Bartholomäberg the high montane-subalpine climax soil podzol was eroded and buried by several colluvial layers (M). These layers evidence different phases of human activity (Fig. 1). It was possible to differentiate them by micromorphological analyses and physical
and chemical parameters such as soil organic matter content (SOM) and soil texture.\footnote{13 Further details in Röpke 2012; Röpke and Krause 2012.} All colluvial layers reach relatively high percentages of SOM (average of 2.9 weight-%) and include charcoal particles. In general the oldest M1 layer contains less organic matter (average 2.34 weight-%), whereas M layers above 5 weight-% are considered as former palaeo surfaces or upper parts of a colluvial layer. They can be recognised in thin section by the high amount of burnt/unburnt roots and numerous plant residues. Additionally the diverse geology leads to textural differences, e.g. weathered sedimentary rock is transported downwards into the crystalline zone.

In many cases charcoal layers separate the colluvial layers. These signs of past fires can be regarded as man-made, because in the humid climate of the Northern Alps wild fires are neglectable.\footnote{14 Tinner et al. 2005.} They imply a close correlation between fire, land-use history and
soil development. According to the radiocarbon dates obtained (Tab. 1) in the pasture zone “Allmein” and the former mining zone, the oldest evidence of fire reaches back to the Early and Middle Bronze Age, located in depressions or covered by thick colluvia in footslope positions. This burning was resumed during the Iron Age, documented in the soils of the “Allmein” as well as charcoal being found in connection to mining heaps and debris. The heap “Zum Wurm” (length: 70m, breadth: 40m, height: 2–4m) was built up in two phases (Fig. 1). The palaeo surface of the La Tène Period (379–203 BC) was buried by waste rock materials from the same period (390–208 BC) covered by a small fAh. Renewed activity can be proved for the Late Middle Ages (AD 1297–1401) on top of it. A smaller heap (length: 10m, breadth: 4m, height: 1m) consists of La Tène Period mining debris and a younger phase from the High Middle Ages (1297–1401 AD). The occurrence of five charcoal layers in the most favourable area of the pasture zone indicates rising fire activity during the Early and High Middle Ages. From the end of the High Middle Ages till the Late Middle Ages evidence of burning merely took place in connection with mining activity.

Synthesis

Together with palaeoecological and archaeological investigations, it is possible to evaluate past human-fire-environment interactions. Charcoal layers in soils from different altitudes (1300–1550m a.s.l.) evidence the first extensive use of fire in the high montane-subalpine forest during the transition Early-Middle Bronze Age. The forest was cleared to gain pasture land and settlement areas as showed in the pollen record by a decrease of spruce and fir with a simultaneous increase in settlement and grazing indicators and microscopic charcoal.

15 Oeggl, Kofler, and Wahlmüller 2005; Schmidl et al. 2005
16 Würfel et al. 2010
17 Schmidl et al. 2005
that time on, the lower part of the former pasture zone was changed into a mining region. From the Early Middle Ages to the High Middle Ages, an increase of charcoal layers in soils of the pasture zone (1450–1800m a.s.l.) occurs. This impact is not reflected palynologically for the Early Middle Ages, but for the High Middle Ages. In general during the High Middle Ages and Late Middle Ages (immigration of the Walser people) increasing land-use in this region is shown in various pollen diagrams.

During this period there is no charcoal evidence in the soils of the pasture zone, and the microscopic charcoal record from the investigated peat bog Tschuga shows very low fire intensity. Either grazing pressure was sufficiently high to keep the areas open and forests were cleared at a greater distance or the wood was cut without burning. However, evidence of fire is related to the mining zone. In this zone human activity is unambiguously documented by mining heaps, debris, a shaft and a smithing place.

20 Krause 2009.
Bibliography

Ad-hoc-AG Boden 2005

Bronk Ramsey 2010

Carcaillet 2001

Conedera and Tinner 2010

Gavin et al. 2007

Heitz 1975

Kostenzer 1996

Krause 2007

Krause 2009

MSCC 2000

Oeggl, Kofler, and Wahlmüller 2005
Rius, B. Vannièrè, and Galop 2009

Röpke 2012

Röpke and Krause 2012

Röpke et al. 2011

Scheibenstock 1996

Schmidl et al. 2005

Tinner et al. 2005
W. Tinner et al. “Fire Ecology North and South of the Alps Since the Last Ice Age”. The Holocene 15 (2005), 1214–1226. DOI: 10.1191/0959683605hl1892rp

Walter and Lieth 1967

Werner 2005

Wolkersdorfer 2005
Würfel et al. 2010

Astrid Röpke, Institut für Archäologische Wissenschaften, Goethe University, Grüneburgplatz 1, 60323 Frankfurt am Main, Germany, A.Roepke@em.uni-frankfurt.de